Numerical Radius Inequalities for Square-zero and Idempotent Operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extend numerical radius for adjointable operators on Hilbert C^* -modules

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

متن کامل

Inequalities for the Norm and Numerical Radius of Composite Operators in Hilbert Spaces

Some new inequalities for the norm and the numerical radius of composite operators generated by a pair of operators are given.

متن کامل

Norm and Numerical Radius Inequalities for a Product of Two Linear Operators in Hilbert Spaces

The main aim of the present paper is to establish some norm and numerical radius inequalities for the composite operator BA under suitable assumptions for the transform Cα,β (T ) := (T ∗ −αI) (β I−T ) , where α ,β ∈ C and T ∈ B(H), of the operators involved. Mathematics subject classification (2000): Primary 47A12, 47A30; Secondary 47A63..

متن کامل

Some numerical radius inequalities with positive definite functions

 ‎Using several examples of positive definite functions‎, ‎some inequalities for the numerical radius of‎ ‎matrices are investigated‎. ‎Also‎, ‎some open problems are stated‎.

متن کامل

Some improvements of numerical radius inequalities via Specht’s ratio

We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2008

ISSN: 1846-3886

DOI: 10.7153/oam-02-08